Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Structural Compression of Convolutional Neural Networks Based on Greedy Filter Pruning
Convolutional neural networks (CNNs) have state-of-the-art performance on many problems in machine vision. However, networks with superior performance often have millions of weights so that it is difficult or impossible to use CNNs on computationally limited devices or to humanly interpret them. A myriad of CNN compression approaches have been proposed and they involve pruning and compressing t...
متن کاملFeature-based Attention in Convolutional Neural Networks
Convolutional neural networks (CNNs) have proven effective for image processing tasks, such as object recognition and classification. Recently, CNNs have been enhanced with concepts of attention, similar to those found in biology. Much of this work on attention has focused on effective serial spatial processing. In this paper, I introduce a simple procedure for applying feature-based attention ...
متن کاملDiscriminating between Similar Languages with Word-level Convolutional Neural Networks
Discriminating between Similar Languages (DSL) is a challenging task addressed at the VarDial Workshop series. We report on our participation in the DSL shared task with a two-stage system. In the first stage, character n-grams are used to separate language groups, then specialized classifiers distinguish similar language varieties. We have conducted experiments with three system configurations...
متن کاملJoint Event Extraction Based on Skip-Window Convolutional Neural Networks
Traditional approaches to the task of ACE event extraction are either the joint model with elaborately designed features which may lead to generalization and data-sparsity problems, or the word-embedding model based on a twostage, multi-class classification architecture, which suffers from error propagation since event triggers and arguments are predicted in isolation. This paper proposes a nov...
متن کاملPruning Convolutional Neural Networks for Resource Efficient Transfer Learning
We propose a new framework for pruning convolutional kernels in neural networks to enable efficient inference, focusing on transfer learning where large and potentially unwieldy pretrained networks are adapted to specialized tasks. We interleave greedy criteria-based pruning with fine-tuning by backpropagation—a computationally efficient procedure that maintains good generalization in the prune...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2018
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2017edl8248